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Supression and creation of chaos in a periodically forced Lorenz system
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Periodic forcing is introduced into the Lorenz model to study the effects of time-dependent
forcing on the behavior of the system. Such a nonautonomous system stays dissipative and has
a bounded attracting set which all trajectories finally enter. The possible kinds of attracting sets
are restricted to periodic orbits and strange attractors. A large-scale survey of parameter space
shows that periodic forcing has mainly three effects in the Lorenz system depending on the forcing
frequency: (i) Fixed points are replaced by oscillations around them; (ii) resonant periodic orbits are
created both in the stable and the chaotic region; (iii) chaos is created in the stable region near the
resonance frequency and in periodic windows. A comparison to other studies shows that part of this
behavior has been observed in simulations of higher truncations and real world experiments. Since
very small modulations can already have a considerable effect, this suggests that periodic processes
such as annual or diurnal cycles should not be omitted even in simple climate models.

PACS number(s): 05.40.+j, 05.45.+b

I. INTRODUCTION

Many nonlinear dynamical systems have aperiodic so-
lutions that show an extreme sensitivity to changes in
initial conditions so that two neighboring trajectories di-
verge exponentially. These nonlinear models seem to re-
produce the behavior of a large number of physical sys-
tems. The necessarily limited knowledge of initial con-
ditions prevents an accurate prediction of the future be-
havior of these systems. In recent years much attention
has been paid to methods and processes that might be
able to suppress chaos or even control it (see Ref. [1] for
an overview over the literature until 1992). For example,
the addition of external periodic forcing has been applied
in several nonlinear systems, such as the driven pendu-
lum [2], the perturbed sine-Gordon equations [3,4], and
the Bonhoeffer—Van der Pol (BVP) oscillator [1].

Of special—not only scientific—interest in this context
is the climate system and its future behavior [5]. Mo-
tion in the climate system has been known as chaotic [7].
Yet there is considerable evidence that there are strong
regular signals in climatic records [8]. The regular time
varying external forcing of the climate system seems to
induce both chaotic and regular behavior under certain
circumstances. To understand more of the processes that
might be involved, we use the so-called quasi-geostrophic
model of atmospheric circulation together with periodic
forcing to study the response of the system to periodic
signals. This corresponds to the control method men-
tioned above, but the motivation is very different.

The model was introduced by Lorenz [6] as
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U1 = A1Y2y3 — voy1 + A2F,
Y2 = —A191Y3 — Voy2 — Asys, (1)
Yz = —avoys + Asys,

where all coefficients are constants and F represents the
radiative heating of the atmosphere (a detailed descrip-
tion of the model is given in [6]). For constant forcing,
these equations can be linearly transformed [6] into the
original Lorenz equations [7)

z=o0(y—x),
y=rz—y-—zxz, (2)
z=uzy — bz,

with (positive) parameters o, r, and b.

In this study, we will add a periodic forcing function to
the constant forcing term F' (w is the number of periods
per day)

F(t) = F; + Assin(wt), (3)

which leaves the Z; symmetry of the system unchanged.
The periodic term can be regarded as a representation of
annual, daily, or other periodic processes in the thermal
forcing of the atmosphere.

Various methods of controlling chaos have been applied
in the Lorenz system: Periodic variation of the Rayleigh
number [9], an amplitude-dependent Rayleigh number
[10], continuous feedback control [11], and stochastic con-
trol [12]. Periodic variation of the Rayleigh number has
been studied experimentally for Rayleigh-Bénard convec-
tion [13-15]. The addition of an external forcing function
is not only unique to simulate the real forcing of the at-
mosphere mathematically, but also has advantages com-
pared to the other methods, for it allows us to deduce
some of its properties analytically and enables the appli-
cation of the procedure of Shimada and Nagashima to
calculate Lyapunov exponents [16].
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We will start, accordingly, with a global analysis, which
will show that the periodically forced Lorenz system stays
bounded and dissipative, while the only observable at-
tracting sets are strange attractors and periodic orbits.
Section IIT describes the numerical method for the cal-
culation of the Lyapunov dimension. The results will be
presented in Sec. IV. We will see that periodic forcing
is able both to create and to suppress chaos by resonant
interaction. In Sec. V we will relate our results to studies
of higher-order truncations [17] and experimental stud-
ies. Finally, Sec. VI contains a brief summary and our
conclusions.

II. GLOBAL PROPERTIES

Because of the time-dependent forcing function F(t)
system (1) belongs to an entirely different class from the
original Lorenz system (2): the nonautonomous systems.
The well-known properties of the Lorenz system such as
boundedness of the trajectories or existence of attract-
ing sets [18] are therefore no more guaranteed. Before
we study the effects of periodic forcing we first examine
which of these properties are preserved by the nonau-
tonomous system and which changes have to be consid-
ered.

A. Boundedness of the trajectories

Since we have a periodically forced system, we might
expect some resonance phenomena or even a resonance
catastrophe. This possibility is excluded by the bounded-
ness theorem we will prove in this section. Boundedness
of the trajectories is an essential requirement for a rea-
sonably realistic model of the Earth’s atmosphere, where
most of the dependent variables are bounded.

We consider the general case of a dynamical system
having the form

w; = Eaijkijk - Z bijwj + Fi(t), (4)
gk J

where the coefficients a;jr and b;; are constant in
time and the functions F; have a global maxi-
mum.  Analogously to [6] we define a quadratic
form B = i bijwjw;, and a trilinear form A =
Zi,j,k a;jrw;w;wg. The square distance in phase space
between a trajectory and the origin is R = Y, w?. We
obtain

B= A—B-}-}%:iFi(t)wi. (5)

Let Aax denote the maximum of A on the unit sphere
R =1, and By,;, the minimum of B on the unit sphere.
Because of the boundedness of the functions F;(t) we
know that a maximum Fp.x of ), F;(t)w; exists on the
unit sphere. It follows that

R < Amasz - BminR + Fmax- (6)

In the case of system (1) we see that A is always zero
because ajp3 = A1 = —az31 and all other a;j, = 0. For
B to be positive definite all eigenvalues of the symmetric
matrix % (bi; + bj;) must be positive, which is the case if
vo > 0 and

40J/0 (A3 - A4) . (7)
Since F; + As sin(wt) is a bounded function we can find a
Frnax = A2(F1 + As). It follows that R < 0 if R exceeds
a certain value Ry, so that all orbits ultimately enter and
remain in a bounded ellipsoid £ = Rg + €, where € can
be any small positive quantity.

B. Possible attracting sets

The properties we have found so far already restrict
the type of attracting invariant sets under the flow F we
expect to observe in this system: (1) It is obvious that in
the dissipative, nonautonomous system (1) neither sta-
tionary points, nor completely unstable periodic orbits
can be found. (2) If we write system (1) in the form
v = F(y,t), the divergence of the flow is constant and
stays the same over the whole phase space:

0F;, OF, OF;
V.-F= o + By + Oy v(2+a)<0. (8
If we choose an arbitrary, but fixed, volume V in phase
space we can integrate the divergence over V:

/v-mv: —u(2 + Q)V. 9)
\ 4

It follows that the flow through its surface S must be
negative (for vg,a > 0):

/F-do:/V-FdV<0. (10)
S \%4

If a fixed volume in phase space is an attractor of system
(1) then the flow has to be tangential to its surface for
t — oo. The scalar product F - do would be always 0
and, therefore, st- do = 0, which contradicts (10).
Consequently, invariant tori and quasiperiodic behavior
cannot occur.

We already see that in the generic situation of a numer-
ical survey we are left only with two kinds of observable
attracting sets: periodic orbits and strange attractors.

III. NUMERICAL CALCULATION
OF LYAPUNOV DIMENSION

A. Choice of the parameters

The parameter values are chosen to be the same as in
[6]. Their numerical values are, accordingly, 4; = %\/5,
Ay =3 A3 = -3, Ay =-¥2,a=3and v = 5.
These values fulﬁll condltlon (7) We will limit the pa-
rameter range of F of our numerical investigation to the
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interval [0,0.5]. As will be varied between 0 and F; so
that F is always larger than zero. The period of the forc-
ing will be between 2 and 1000 days (corresponding to

= 0.5 and w = 0.001 periods per day). The reasons
for this choice will become clearer in the following sec-
tions. The unit of time for the integration is chosen to
be At = 10800 s=3 h. We used the fourth-order Taylor-
series scheme of Lorenz [6] to integrate the model, which
consists of evaluating the first four derivatives of y;, ya,
and y3 at time ¢t and then letting

4

Z[ tkyz(t] Akt . (11)

k=0

(t+ At)

B. Lyapunov dimension

There are several methods to characterize the behav-
ior of dynamical systems such as Fourier analysis, or the
first return map of subsequent maxima [7]. In our system
we have three control parameters Fi, As, and w, which
makes it more convenient to use a generalized dimension
measure such as the Hausdorff-Besikovich dimension or
the correlation dimension [19]. In this study we will use
the Lyapunov dimension to characterize the general be-
havior of system 1, which is given by the Kaplan-Yorke
conjecture

AHdg oo

[Aj+1]

+

Dy = ] + ’ (12)
where the A; are the Lyapunov exponents ordered in de-
scending order A; > A2 > --- > Ay and j is the largest
integer for which Ay + A2 +---+ X; > 0.

The Lyapunov exponents describe the expansion rate
of a small deviation in the initial conditions [20]. In a
three-dimensional system three directions are possible. If
the trajectory moves on a strange attractor, at least one
Lyapunov exponent is positive, since chaotic motion is
characterized by high sensitivity to small changes in ini-
tial conditions. We will use the numerical procedure of
Shimada and Nagashima [16] to calculate the Lyapunov
exponents. The derivation of this procedure is only given
for autonomous systems, but it is also valid in nonau-
tonomous systems since it uses only general properties of
linear equations.

The Kaplan-Yorke formula (12), however, does not
hold for all cases. There are several counterexamples
[21], but in the Lorenz system under constant forcing this
relation is valid. This makes the application of the Lya-
punov dimension interesting for our study: it does not
need large computational efforts and can be used conve-
niently to map the behavior of the system. Results show
that periodic orbits could be distinguished from chaotic
orbits by a considerable difference in the numerical value
of the Lyapunov dimension.

IV. THE EFFECTS OF PERIODIC FORCING

A. Parameter domains under constant forcing

For our choice of parameters, the parameter range of F’
can be divided into three domains according to the char-
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acteristic' qualtitative behavior of the quasigeostrophic
model (1) under constant forcing [18]: (1) Domain I: For
F € [0,0.0163] there is one globally stable stationary
point. (2) Domain II: In the interval [0.0163,0.10785]
stability is transferred to a symmetric pair of stationary
points. The linearized flow near these points has three
real negative eigenvalues only when F' is very close to
0.0163, otherwise we have one real root and a pair of
complex conjugate eigenvalues with negative real parts.
(3) Domain III: For F' > 0.10785 no stable stationary
points exist, the trajectory moves in most cases aperi-
odically on a strange attractor, except in the periodic
windows where periodic orbits are stable [18].

We will see that this partition is also useful for the
periodically forced system, because the system’s response
will be qualitatively different in each domain.

B. Lyapunov dimension maps

To get an overview over the effects of periodic forc-
ing we mapped Lyapunov dimension Dy, for several fixed
values of constant forcing F; varying As and w in the
specified ranges. As expected periodic orbits showed up
in areas with Dy near 1, while chaos was detected in
areas of higher Dy. In each domain we obtained a qual-
itatively different map: (1) In domain I only a flat plane
of Dy = 1 was visible, which leads to the conclusion that
only periodic orbits exist in this domain. (2) The map
of domain II (Fig. 1) shows high Dy, near the complex
eigenvalues of the system, where we find chaos or at least
transient chaos. In the rest of the parameter range there
is again a plane of Dj = 1 associated with periodic or-
bits. (3) In domain III (Fig. 2) we observe Dy, near
2 indicating the existence of a strange attractor, inter-
rupted by a “valley” near the complex eigenvalues of the
system and some isolated “holes” where periodic orbits
exist.

These maps allow a classification of the wide variety
of phenomena created by periodic forcing in the quasi-

FIG. 1. Lyapunov dimension Dy for F; = 0.04 (domain
IT), As € [0,0.04] and w € [0, 0.2] (oscillations per day).
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FIG. 2. Lyapunov dimension Dy, for F; = 0.3 (domain III),
As € [0,0.3] and w € [0,0.5] (oscillations per day).

geostrophic model. There are two basic types of behavior
depending on the amplitude As of periodic forcing. The
first type occurs when As is relatively low, so that the
total forcing F'(t) never leaves one domain, while the sec-
ond type is observed when Ajy is high enough to produce
overlapping effects between different domains.

C. Effects without overlapping

The Lyapunov dimension map for maximal periodic
forcing (As = F}1) is shown in Fig. 3. It is seen that the
forcing frequency is the significant parameter that deter-
mines the response of the system, since all phenomena oc-
cur near the eigenfrequency and its multiples. The effects
are qualitatively different in each domain: (1) Through-
out domain I we observe a simple oscillation around the
stationary point of the system under constant forcing.
For very low frequencies the system follows quasistati-
cally the F'(t)-dependent stationary point (Fig. 4). (2)

0.50 <%

0.40

o
w
S

K
0.20F

Constant Forcing Fy

0.00 0.10 0.20 0.30 0.40 0.50
Frequency of periodic Perturbation

FIG. 3. Contour map of Lyapunov dimension for maximal
periodic forcing (A4s = Fi), F; € [0,0.5] and w € [0,0.5]

(oscillations per day).
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Similar effects occur in domain II for frequencies suffi-
ciently far from the complex eigenvalues, e.g., oscillations
around the stationary points for higher frequencies (Fig.

5), and a quasistatic orbit for very low forcing frequen-
cies (Fig. 6). Only near the eigenfrequency of the system
do we find a new phenomenon: the creation of chaos,
transient chaos (Fig. 7), and complicated subharmonic
periodic orbits (Fig. 8). (3) In domain III the chaotic
behavior remains essentially unchanged, except near the
eigenfrequency associated with the nonstable stationary
points. Here the strange attractor is replaced by a peri-
odic orbit (Fig. 9). For certain combinations of As, F1,
and w there exist also isolated periodic orbits. (4) In the
periodic windows the periodic orbits are almost immedi-
ately destroyed if the forcing frequency is not equal to
their own frequency. On the other hand, these orbits are
stabilized beyond their usual range of existence, if the
forcing is appropriately adjusted.

D. Overlapping effects

There are two types of effects if the forcing F(t) wan-
ders between different domains: (1) The domain bound-
aries are shifted due to different convergence times, so
that the oscillations of domain I are able to exist also in
the marginal region of domain II (Fig. 4). For very low
forcing frequencies we find that the periodic orbits of do-
main II can be destabilized if F'(t) spends sufficient time
in the chaotic domain III. (2) For low forcing frequencies
we observe mixed orbits that show periodic change be-
tween the quasistatic orbit of domain II and chaos (Fig.
10) or between the quasistatic orbits of domains I and II

(Fig. 11).

E. Resonance

The previously described results imply an involvement
of resonance in the explanation of the occurring phenom-
ena. Qualitative changes of the system’s behavior occur
only for frequencies near the eigenfrequency of the system
with constant forcing. The effect is largely independent
of the amplitude of periodic forcing. In parameter ranges
with other frequencies the underlying structure of the
system under constant forcing is not essentially changed,
e.g., stationary points are replaced by small oscillations
around them, and chaos remains unchanged. So creation
of chaos in the stable domains I and II and of periodic
orbits in the chaotic domain take place only in a small
frequency range around the complex eigenvalues.

Three reasons support this assumption: (1) The am-
plitude of the oscillations in domain II increases con-
tinuously when the frequency of the periodic forcing is
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FIG. 4. The quasistatic orbit of domain I
dominates over the periodic orbit of domain
II near the domain boundary at F; = 0.016,
As = 0.016, and w = 0.005 oscillations per
day.

FIG. 5. Oscillation around a stationary
point in domain II at F; = 0.04, As = 0.02,
and w = 0.15 oscillations per day.

FIG. 6. A quasistatic orbit following a
F(t)-dependent stationary point of domain II
at F;, = 0.05, As = 0.02, and w = 0.004 os-
cillations per day.

FIG. 7. Transient chaos preceding a reso-
nant periodic orbit at F; = 0.04 (domain II),
As = 0.02 and w = 0.06 oscillations per day.
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FIG. 8. Phase portrait of a resonant periodic orbit in do-
main Il at F; = 0.04, As = 0.02, and w = 0.02 oscillations
per day.

decreased towards the eigenfrequency. (2) In domain I
where no complex eigenvalues exist we observe neither
chaotic behavior nor new periodic orbits. (3) Periodic
forcing is able to stabilize periodic orbits in parameter
ranges where they are unstable under constant forcing if
the forcing frequency is equal to their own frequency.

V. HIGHER-ORDER MODELS
AND EXPERIMENTS

How far are these results extendible to real world prob-
lems? The main problem is the justification of the ex-

FIG. 9. Phase portrait of a resonant periodic orbit in the
chaotic domain III at F; = 0.3, As = 0.3, and w = 0.23
oscillations per day.
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treme truncation of system (1) or (2). If a center mani-
fold reduction is performed for the equations of Rayleigh-
Bénard convection, one arrives at three essential modes
which govern the overall behavior of the system. If the
solution of the partial differential equation is expanded
into these three modes and the other modes are discarded
one arrives after rescaling at the Lorenz equations (2).
Therefore, the use of a three-mode truncation appears
appropriate from a mathematical point of view.

Nevertheless, it has to be examined how well the
behavior of the low-order model is reproduced by
higher-dimensional truncations of the original infinite-
dimensional problem. Some investigations indicate that
the behavior of the Lorenz system does not always occur
in the same way in higher truncations [22].

In our case of the periodically forced system (1) there
is the study of Curry [17] where he investigates the in-
teraction of a set of 14 Fourier modes obtained from
the Navier-Stokes equation in the Boussinesq approxi-
mation (the Lorenz system can be derived in a simi-
lar way from this equation). In his simulation he uses
a fixed Prandtl number o0 = 2.5 near to our choice of
a = 0 = 3 and the ratio of Rayleigh number to critical
Rayleigh number r = R/R, as a bifurcation parameter.
Curry studies a parameter range where attracting invari-
ant tori exist. Since—as we have shown—such objects
cannot occur in the Lorenz system, we might expect to
see this difference frequently when comparing the Lorenz
system and higher-dimensional truncations. Nevertheless
Curry claims that these tori play the role of the station-
ary points in the ordinary Lorenz system (2). Periodic
forcing is introduced in a similar way as in our study
by periodic modulation of the Rayleigh number, which
is proportional to our forcing function F. His observa-
tions correspond to ours: On the one hand the system
responds periodically to the forcing, on the other hand
certain frequencies produce a chaotic response.

Curry’s investigation was motivated by Gollub and
Benson’s experimental study of Rayleigh-Bénard convec-
tion [15]. They used a small rectangular fluid cell con-
taining water at 70 °C where the Prandtl number is 2.5.
The vertical temperature difference and, accordingly, the
Rayleigh number could be modulated. Their system
showed qualitatively similar behavior to Curry’s 14-mode
system although Curry states that his system is not ade-
quate to describe low-Prandtl-number fluids. Obviously
the relation of the Lorenz and Curry equations to the re-
sults of Gollub and Benson remains unclear, but they
show that the qualitative behavior produced by these
simple systems can also be observed in real world ex-
periments.

The question of the relationship of the simple models
(1) and (2) to the climate system with its variety of in-
teracting cycles is difficult to answer. It is still unknown
which of the atmospheric processes (including the con-
vective processes that are modeled in our system) are
essential for modeling climate. Even the question how
chaotic behavior in the atmosphere is related to chaos in
a finite system of ordinary differential equations is still
unresolved.
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A hint in this direction was given by Lorenz [6]. He
has shown that the attractor of the quasigeostrophic
model (1) is qualitatively like that of the corresponding
nine-dimensional system without geostrophic approxima-
tion, provided that the intensity of the forcing is not too
strong. This confirms that, since a large part of atmo-
spheric processes occurs in geostrophic equilibrium, our
model enables at least the representation of a reasonable
class of phenomena, but it is obvious that further in-
vestigations are necessary before any reliable conclusions
concerning climate can be drawn.

VI. CONCLUSION

The effects of introducing periodic forcing into the
quasigeostrophic model (1) can be summarized in four
points: (1) A global analysis shows that the periodi-
cally forced system stays dissipative and bounded. The
kinds of attracting sets in the quasigeostrophic model (1)
is restricted. Stable three-dimensional manifolds with
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FIG. 10. Periodic change between chaotic
and stable behavior at F; = 0.1, As = 0.1,
and w = 0.002 oscillations per day.
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nonzero volume (including invariant tori) do not exist
under its flow, neither do stable equilibrium solutions.
The only observable attracting sets are periodic orbits
and strange attractors. (2) For forcing frequencies suffi-
ciently far from the eigenfrequency stationary points are
replaced by oscillations around them, while chaotic be-
havior remains essentially unchanged. Periodic forcing
is able to stabilize periodic orbits in the chaotic region.
(3) Near the eigenfrequency we observe resonance phe-
nomena: (a) It is possible to produce a chaotic response
in the stable region. (b) Chaos can be suppressed, if
the forcing frequency is appropriately adjusted. (c) New
complicated subharmonic orbits are created. (4) If the
forcing wanders between different parameter domains we
find overlapping effects such as mixed orbits and shifting
of domain boundaries.

Some of these effects have been observed in higher-
dimensional models and experiments [15,17], but the re-
lation to the climate system remains uncertain. Lorenz
concluded that, if the real atmospheric equations be-
haved like his model, long-range forecasting of specific
weather conditions (which also includes climatic phenom-
ena) would be impossible [23]. He explicitly removed an-
nual and diurnal variations in his model while our study
shows that periodic variations in the thermal forcing can-

“““mm“”““w FIG. 11. Periodic change between the

quasistatic orbits of domains I and II at
F; = 0.055, As = 0.047, and w = 0.001 oscil-
lations per day.
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not only have a considerable effect, but in some cases are
even able to suppress chaotic behavior. Certainly his
conclusion might still be valid, for chaos in our system is
only supressed for certain parameter choices, but still our
study implies that periodic cycles in the climate system
might play too important a role to be neglected.
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FIG. 1. Lyapunov dimension Dy for F; = 0.04 (domain
I1), As € [0,0.04] and w € [0,0.2] (oscillations per day).
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FIG. 2. Lyapunov dimension Dy, for F; = 0.3 (domain III),
As € [0,0.3] and w € [0,0.5] (oscillations per day).



